CONTINUOUS BLOWDOWN SYSTEM PRODUCT GUIDE

Overview

Proportional blowdown heat recovery system is designed to operate with either an atmospheric boiler feed system or a deaerator.

- Model BDHR-S Series for single boiler applications.
- Model BDHR-M Series for multiple boiler applications.

Notes and Conditions

- Minimum Operating Pressure is 35 psig
- Maximum Operating Pressure is 250 psig
- A system can manage 1 6 boilers as described below.
- A surface blowdown tap on the boiler must exist and be used for this system.

Section BB-1 Rev. 10-10

FEATURES AND BENEFITS

BDHR-S and BDHR-M Series (High Pressure Steam Applications)

Integrated System Automatically Adjusts to Changing Demands:

- Recovers 90% of heat normally lost
- Automatically controls surface blowdown flow to maintain the desired concentration of dissolved solids within the boiler
- Automatically controls boiler dissolved solids
- Compact Size for Convenient Placement
- Reduced installation costs
- Removable Shell for Easy Inspection and Cleaning
- · Reduces maintenance costs
- Significant Fuel Savings for Any Size Boiler
- Transfers the blowdown heat to the make-up, thereby decreasing fuel costs
- Saves chemical costs by reducing blowdown
- Blowdown is Cooled Before Discharging Into the Sewer
- · Complies with discharge water codes

Section BB-2 Rev. 10-10

PRODUCT OFFERING

BDHR-S and BDHR-M Series

Continuous boiler surface blowdown is the most effective method of purging destructive solids from any steam boiler system. However, this protective procedure also results in a constant and costly heat loss, unless a blowdown heat recovery system is used.

Cleaver-Brooks blowdown/heat recovery systems adjust automatically to changing system demands, and recover 90% or more of the heat normally lost during boiler surface blowdown operation.

The blowdown/heat recovery systems will usually result in a payback in a few short months from fuel savings alone. Refer to Figure H12-1 for selection and payback calculations.

The Cleaver-Brooks Packaged Blowdown Heat Recovery System serves two primary functions.

- It automatically controls the surface blowdown to maintain the desired level of total dissolved solids (TDS) in the boiler, reducing the amount of blowdown to a minimum.
- 2. It recovers the heat from the high temperature blowdown, and transfers it to the incoming cold make-up water, maximizing boiler efficiency. Use of BDHR also improves deaerator efficiency by reducing surges caused by adding large amounts of cold make-up water to the system.

The control valve within the unit performs two functions. The valve senses the flow of make-up, and positions itself to maintain the desired ratio of blowdown and make-up flows. As a result, the dissolved solids concentration within the boiler is maintained automatically.

The proportioning control also provides for very effective heat recovery since hot blowdown flows only when there is a corresponding flow of cold water (make-up).

Model BDHR-M Systems for multiple boiler installations include a flow control valve for each boiler. This allows for proportioning the overall system blowdown between different boilers, which may be operating at different loads. A strainer and sampling valve are also provided for each boiler, with a sample cooler mounted on the system. Thus, all boilers can be sampled at one convenient location.

The heavy duty blowdown heat exchangers are uniquely designed to handle the blowdown on the tube side. This allows many tube side passes, which ensures maximum heat transfer, and maintains high fluid velocities preventing scaling and fouling. Due to the severe service, tubes are stainless steel, and because of the abrasive nature of the fluid, return bends are fabricated of extra thick material. Since vibration is a common problem with blowdown exchangers, hold down devices are provided to clamp the tube bundle in place.

Each system is equipped with a blowdown outlet thermometer so that performance can be monitored. By logging data regularly, a cleaning schedule can be established for each exchanger.

Package Description

The single boiler package consists of the following equipment:

- Thermostatic control
- Heat exchanger

Section BB-3 Rev. 10-10

- Thermometer
- Interconnecting pipe

The multiple boiler packages consist of the following equipment:

- Thermostatic control
- Heat exchanger
- Flow control valves
- Sample cooler
- Valve assemblies
- Thermometer
- Interconnecting pipe

All systems include an ASME "U" stamp for the heat exchanger

Section BB-4 Rev. 10-10

Packages

Model Number	Blowdown Total Max Capacities (gpm)	Make-up Total Max Capacities (gpm)	Shipping Weight (lbs.)
BDHR-2S	2	48	200
BDHR-4S	4	48	300
BDHR-9S	9	130	600
BDHR-14S	14	130	760
BDHR-22S	22	180	900

Blowdown system for one boiler

Model Number	Blowdown Total Max Capacities (gpm)	Make-up Total Max Capacities (gpm)	Shipping Weight (lbs.)
BDHR-2M-2	2	48	275
BDHR-4M-2	4	48	380
BDHR-9M-2	9	130	700
BDHR-14M-2	14	130	870
BDHR-22M-2	22	180	1,025

Blowdown system for two boilers

Model Number	Blowdown Total Max Capacities (gpm)	Make-up Total Max Capacities (gpm)	Shipping Weight (lbs.)
BDHR-2M-3	2	48	300
BDHR-4M-3	4	48	400
BDHR-9M-3	9	130	720
BDHR-14M-3	14	130	880
BDHR-22M-3	22	180	1,050

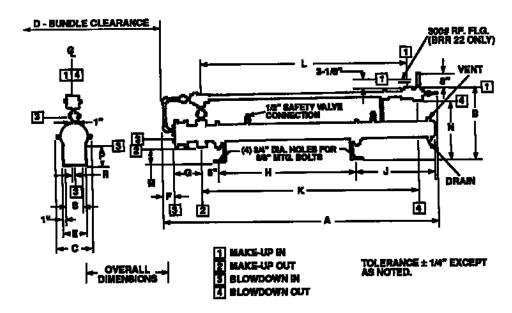
Blowdown system for three boilers

Model Number			Shipping Weight (lbs.)	
BDHR-4M-4	4	48	400	
BDHR-9M-4	9	130	720	
BDHR-14M-4	14	130	880	
BDHR-22M-4	22	180	1,050	

Blowdown system for four boilers

Model Number	Blowdown Total Max Capacities (gpm)	Make-up Total Max Capacities (gpm)	Shipping Weight (lbs.)
BDHR-9M-5	9	130	750
BDHR-14M-5	14	130	925
BDHR-22M-5	22	180	1,060

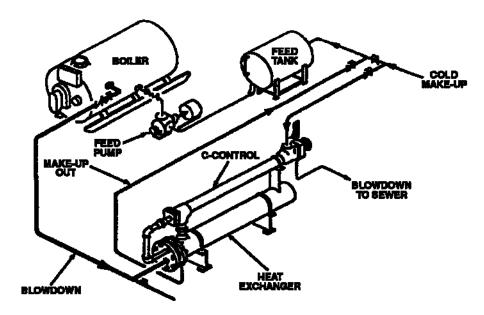
Blowdown system for five boilers


Section BB-5 Rev. 10-10

Model	Blowdown Total Max	Make-up Total Max	Shipping
Number	Capacities (gpm)	Capacities (gpm)	Weight (lbs.)
BDHR-22M-6	22	180	

Blowdown system for six boilers

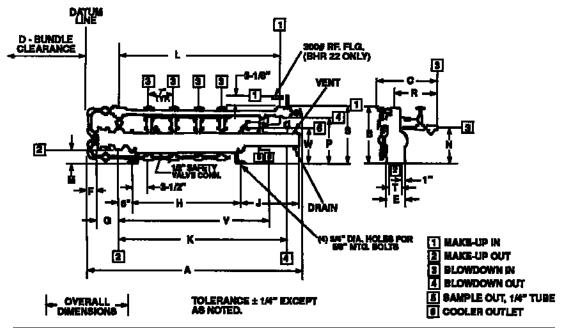
Section BB-6 Rev. 10-10



	MODEL BDHR-S SERIES DIMENSIONS						
MODEL NO.	BDHR-2S	BDHR-4S	BDHR-9S	BDHR-14S	BDHR-22S		
A REF	54-1/2	81-1/2	84	127	128		
В	20-1/2	20-1/2	23-1/2	23-1/2	33		
C REF	8	8	10	10	12-1/2		
D REF	28	64	64	100	100		
E REF	7	7	9-1/8	9-1/8	11-1/8		
F EF	5-1/2	5-1/2	5-1/2	5-1/2	6		
G	7-1/2	7-1/2	8	8	9-1/2		
H + 1/8	16-1/2	38-1/2	38-1/2	64-1/2	64-1/2		
J REF	9	22-3/4	22-3/4	33-1/2	31-1/2		
K	35-3/4	62-5/8	62-5/8	107-1/2	105		
L	33	60	60	105	96-1/2		
M	4-1/2	4-1/2	4-3/8	4-3/8	4		
N	16-1/2	16-1/2	19-1/2	19-1/2	24-1/2		
Р	7	7	7	7	7-1/2		
R	1/2	1/2	*	*	3/4		
S + 1/8	5	5	7-1/8	7-1/8	9-1/8		
		CONNECT	IONS				
1	1-1/2 FPT	1-1/2 FPT	2 FPT	2 FPT	3FLG		
2	1-1/2 FPT	1-1/2 FPT	2 FPT	2 FPT	3 FPT		
3	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	1 FPT		
4	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	1 FPT		

Figure H12-2. Model BDHR-S Dimensions

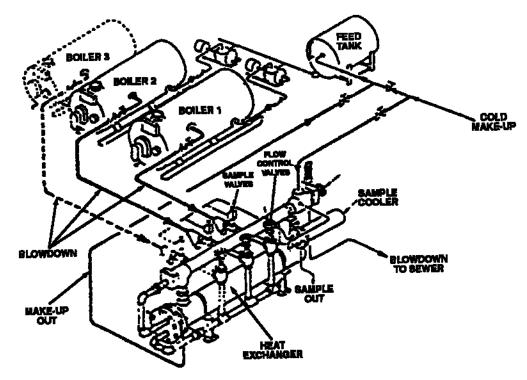
Section BB-7 Rev. 10-10



MAXIMUM CAPACITIES (GPM)						
Model No. Blowdown Make up						
BDHR-2S	2	48				
BDHR-4S	4	48				
BDHR-9S	9	130				
BDHR-14S	14	130				
BDHR-22S	22	180				

Figure H12-3. Model BDHR-S Ratings/Capacities

Section BB-8 Rev. 10-10



	MODEL BD	HR-M SERIES	DIMENSIONS					
MODEL	BDHR-2M	BDHR-4M	BDHR-9M	BDHR-14M	BDHR-22M			
MAX NO.OF BOILERS	4	4	5	5	6			
A REF	54-1/2	81-1/2	84	127	128			
B REF	22	22	24	24	28			
C REF	19-1/4	17-1/4	18-1/2	18-1/2	19-1/2			
D REF	28	64	64	100	100			
E EF	7	7	9-1/8	9-1/8	11-1/8			
F REF	5-1/2	5-1/2	5-1/2	5-1/2	6			
G	7-1/2	7-1/2	8	8	9-1/2			
H + 1/8	16-1/2	38-1/2	38-1/2	64-1/2	64-1/2			
J REF	9	22-3/4	22-3/4	33-1/2	31-1/2			
K	35-3/4	62-5/8	62-5/8	107-1/2	105			
L	33	60	60	105	96-1/2			
M	4-1/2	4-1/2	4-3/8	4-3/8	4			
N	14	14	16	16	20			
Р	13-1/2	13-1/2	15-1/2	15-1/2	21			
R	11-1/2	11-1/2	11-1/2	11-1/2	11-1/2			
S	20-1/2	20-1/2	23-1/2	23-1/2	33			
T + 1/8	5	5	7-1/8	7-1/8	9-1/8			
V	25-1/2	61-1/4	61-1/4	92-1/4	95-3/4			
W	15-1/2	15-1/2	18	18	22-1/2			
	CONNECTIONS							
1	1-1/2 FPT	1/1/2 FPT	2 FPT	2 FPT	3 FPT			
2	1-1/2 FPT	1-1/2 FPT	2 FPT	2 FPT	3 FPT			
3	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT			
4	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	1 FPT			
6	1/4 FPT	1/4 FPT	1/4 FPT	1/4 FPT	1/4 FPT			

Figure H12-4. Model BDHR-M Dimensions

Section BB-9 Rev. 10-10

MAXIMUM CAPACITIES (GPM)							
MODEL BLOWDOWN MAKE-UP							
BDHR-2M	2	48					
BDHR-4M	4	48					
BDHR-9M	9	130					
BDHR-14M	14	130					
BDHR-22M	22	180					

Figure H12-5. Model BDHR-M Ratings/Capacities

Section BB-10 Rev. 10-10

Freight

Pricing is based upon F.O.B. factory - Oconomowoc, WI 53066

		Bro AGUA-CHEM LWAUKEE.							
PO 80)					SYSTEM SE	LECTIO	N & PAY	BACK	
Job Name	8					Sales Age	ncv		······································
Location Date									
					F 35 MINOMUM			•	
1.0 DEFM	NITIONS/D	ATA:				1	.10 Satural	ted Steen	n Tables
1.1 THERM = 100,000 BTU. 1.2 Steaming Rate Lbs./Hr = (34.5) (Max HP Usage). 1.3 Lbs. Water/Hr ÷ 500 = GPM. 1.4 MU = Makeup. 1.5 BD = Blowdown. 1.6 TDS = Total Dissolved Solids. 1.7 C = Concentration = Boiler TDS = Gross MU MU TDS 1.8 Net MU = (Max Lbs/Hr) (1 - Fraction Ret'd Condensate). 1.9 Gross MU = Net MU + RD.					PSIG 75 90 100 125 150 175 200 250	TEM 32 33 33 35 36 36 36 40	20 11 18 33 36 7		
2.0 BOIL	ER OPERA	TING CON	DITIONS (obtained fron	n Owner)	<u> t</u> .,	···-		
Par —	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
Botler No.	Max HP Usage	Steam, Max Lbs/Hr	Oper- ating PSIG	Oper- ating Temp °F	Fraction Returned Condensate	Boiler Eff. %	MU Temp °F	ppm MU TDS	Operating Hrs/Yr
1									
2									
3									
4									
TOTAL									
		ained from	Owner):						
	Cost	Man terri			-\$		/THERM		
3.2 Oii Cost = (\$/Gal) (100000) ÷ (150000 BTU/Gal) = \$ /THERM 3.3 Average Cost = (Fraction Gas) (Gas Cost) + (Fraction Oil) (Oil Cost) = \$dollars/THERM, Average Cost = () () + () () = \$/THERM,									
4.0 BOILER TD\$ LEVEL REQ'D (obtained from Owner) = ppm									
5.0 C (Concentrations) = TDS Boiler = Par 4.0 = () = C						700			
6.0 NET MU = (Max Lba/Hr) (1 - Fraction Returned Condensate) NET MU = (Par 2.2) (1 - Par 2.5) = () () =						_ Lbs/Hr.			
						GPM			
8.0 GROS	MU = (N	et MU)+(B	D)=(Par 6.(0)+(Par 7.0) •	•()+() =	<u>.</u>	

DIVISION OF AGUA-CHEM., INC. P.O. ROX 421 • MILWAUKEE, WIS 53201

BLOWDOWIN HEAT RECOVERY SYSTEM SELECTION & PAYBACK

9.0 EQUIPMENT SELECTION TABLE

- 9.1 Select Model with maximum GPM capacities which are adequate for the GPM of BD (Par 7.0) and Gross MU (Par 8.0). DO NOT EXCEED MAX GPM VALUES FOR MODELS TO AVOID DAMAGING EROSION AND VIBRATION.
- 9.2 Where practical, select mext larger size because:
 - (a) Larger sizes will better accommodate MU surges caused by large and abrupt steam demands, and
 - (b) Larger sizes recover more BD energy, and . . .
 - (c) Systems have a sufficiently fast Payback and high ROI to cost justify the added first costs of larger systems.
- 9.3 Table of Models, BHR SYSTEMS:

Model	Max BD GPM	Max Gross MU GPM	MUI Pressure Drop at Max GPM
BHR-2	2 GPM	48 GPM	1.5 PSI
BHR-4	4 GPM	48 GPM	2.0 PSI
BHR-9	9 GPM	130 GPM	7.5 PSI
BHR-14	14 GPM	130 GPM	10.0 PSI
BHR-22	22 GPM	180 GPM	3.5 PSI
	OVERY EFFICIENC ce Efficiency curve		Par 5.0: "C" value) =
12.0 HEAT RECO	OVERED		s/Hr) (Oper Temp - MU Temp) (Par 24-Par 2.7) ÷ (100000) () ÷ (100000)
42.0 ENERGY 6		and the Ballace Citation	

14.0 \$ SAVINGS/YEAR = (Energy Saved) (Hrs/Year) (Fuel Cost) = (Par 13.0) (Par 2.9) (Par 3.3) = () () () = \$ ______/Yr.

15.0 \$ EQUIPMENT COST (from pricing date) = \$ _____

BLOWDOWN HEAT RECOVERY SYSTEMS SAMPLE SPECIFICATIONS

CONTENTS

GENERAL	H12-13
BDHR-S SERIES	H12-13
BDHR-M SERIES	H12-14

PART 1 GENERAL

1.1 GENERAL

The following sample specifications are provided by Cleaver-Brooks to assist you in specifying your customer's requirements.

PART 2 PRODUCTS

2.1 BDHR-S SERIES

A.	Furnish recovery system design 22) and a maximum	ned to handle a max	imum blowdown rate		0
B.	The heat recovery syst operating at psig to within 30 °F of the m rating at 400 °F.	g (35 to 250). The ur	nit shall be designed	to cool the blowdov	
C.	The heat recovery systemshall automatically regulated by the a valve seat. The inner through the brass jacket go out the exchanger.	ulate the blowdown one thermal expansion tube will contract or	of make-up flow. The n of the inner brass to aly when cold make-u	flow of blowdown ube pressing again up water passes	st
D.	The system shall also he manufactured of 19 gardown clamps to stop tutofor 250 psig at 400°F. The system is the system of the sy	uge, 304 stainless s be bundle vibration.	teel tubes and steel s The vessel shall be	sideshell with hold ASME code stamp	

E. A heat treated stainless steel valve seat and plunger shall manually control the blowdown flow by a handwheel.

efficiency of _____ percent.

stainless steel. The exchanger shall have a minimum sq-ft of surface area. The flow of the blowdown make-up shall flow in opposite directions for maximum heat transfer

F. A blowdown thermometer Weksler Type 152 shall be furnished at the blowdown outlet.

Section BB-14 Rev. 10-10

- G. The entire system shall be supported by steel channel legs with 3/4" diameter holes for customer-supplied 5/8" diameter anchor bolts.
- H. The system will be painted with a hard enamel coating.

2.2 BDHR-M SERIES

The following sample specifications are provided by Cleaver-Brooks to assist you in specifying your customer's requirements.
Furnish Cleaver-Brooks Model BDHR-M package blowdown heat recovery system designed to handle a maximum blowdown rate of gpm (2 to 22) and a maximum make-up rate of gpm (48 to 180).
The heat recovery system shall be designed for boilers of hp (250 - 1500), hp operating atpsig (35 to 250). The unit shall be designed to cool the blowdown to within 30 $^{\circ}$ F of the make- up water temperature. The unit shall have a 250 psig rating at 400 $^{\circ}$ F
The heat recovery system shall consist of a differential temperature control valve that shall automatically regulate the blowdown and make-up flow. The flow of blowdown shall be regulated by the thermal expansion of the inner brass tube pressing against a valve seat. The inner tube will contract only when cold make-up water passes through the brass jacketed steel outer tube shell allowing the blowdown to cool and go out the exchanger.
The system shall also have a heat exchanger, including a removable U-tube bundle manufactured of 19 gauge, 304 stainless steel tubes and steel sideshell with hold down clamps to stop tube bundle vibration. The vessel shall be ASME code stamped for 250 psig at 400°F. The system shall have interconnecting piping of steel and stainless steel. The exchanger shall have a minimum sq-ft of surface area. The flow of the blowdown make-up shall flow in opposite directions for maximum heat transfer efficiency of percent.
A heat treated stainless steel valve seat and plunger shall manually control, the blowdown flow by means of a handwheel. A blowdown outlet thermometer Weksler Type 152 shall be furnished at the blowdown outlet.
A flow control assembly shall be furnished for each boiler. The assembly shall consist of a inch Hancock #4595 flow control valve rated at 300 psig, bronze construction and a inch cast steel strainer with a stainless steel screen and have a 250 psig pressure rating.
A SC-22 sample cooler with isolation valves and interconnecting piping will be supplied.
The entire system shall be supported by steel channel legs with 3/4" diameter holes for customer-supplied 5/8" diameter anchor bolts.

J. The system will be painted with a hard enamel finish coating.

Section BB-15 Rev. 10-10

Notes

